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Motivation

• Ensemble forecasting : Provides flow-dependent 
estimate of uncertainty of the forecast.

• Data assimilation : requires information about 
uncertainty in prior forecast and observations.  

• More accurate estimate of uncertainty, less error in 
the analysis. Improved initial conditions, 
improved ensemble forecasts.

• Ensemble forecasting data assimilation. 



Example: where flow-dependent 
first-guess errors help



New observation is 
inconsistent with 
first guess 



3D-Var produces an 
unappealing 
analysis, bowing 
the front out just in 
the region of the 
observation.

The way an observation influences surrounding points is always
the same in 3D-Var --- typically concentric rings of decreasing
influence the greater the distance from the observation.



Here’s the front you’d 
re-draw based on 
synoptic intuition, 
understanding that     
the errors are flow 
dependent.

How can we 
teach data 
assimilation 
algorithms to 
do this?

In this special case, your
synoptic intuition would 
tell you that temperature
errors ought to be correlated
along the front, from 
northeast to southwest.  
However, you wouldn’t 
expect that same NE-SW 
correlation if the observation 
were near the warm front.  
Analyses might be improved 
dramatically if the errors 
could have this flow-
dependency.



Ensemble-based data 
assimilation algorithms

• Can use ensemble to model the statistics of the 
first guess (“background”) errors.

• Better blending of observations and first guess.

• Initial tests show dramatically improved sets of 
objective analyses.

• These sets of objective analyses are exactly the 
sort of initial conditions we need to initialize 
ensemble forecasts.



Example: Assimilation of sparse sea-
level pressure data into  T62 GCM

From Whitaker et al, 
MWR, submittted



Example: 
assimilation 

of sparse 
sea-level 
pressure 
data into  

T62 GCM

From Whitaker et al, MWR, submittted



4D-Var: As far as data 
assimilation can go?

• Finds model trajectory that best fits observations 
over a time window.

• BUT:
– Requires linear tangent and adjoint (difficult to code, 

and are linearity of error growth assumptions met?)

– What if forecast model trajectory unlike real 
atmosphere’s trajectory? (model error)

• Ensemble-based approaches get around these 
problems. 



From first principles:
Bayesian data assimilation
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Bayesian data assimilation: 
2-D example

Computationally expensive! 



Data assimilation terminology

• y : Observation vector (raobs, satellite, etc.)

• xb : Background state vector (1st guess)

• xa : Analysis state vector

• H : Operator to convert model state obs

• R : Observation - error covariance matrix

• Pb : Background - error covariance matrix

• Pa : Analysis - error covariance matrix



Simplifying Bayesian D.A.: 
toward the Kalman Filter
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Apply Baye’s 
rule; 

Maximizing (@) equivalent to minimizing –ln(@), i.e., minimizing the functional

(@)



Kalman filter derivation continued
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After much math, we end up with the “Kalman filter” equations
(see Lorenc, QJRMS, 1986).
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How the background errors at the next data assimilation time 
are estimated.  M is the “tangent linear” of the forecast model
Assumed .

This equation tells how to estimate the analysis state.
A weighted correction of the difference between the 
observation and the background is added to the background.

K is the “Kalman Gain Matrix.” It indicates how much
to weight the observations relative to the background and
how to spread their influence to other grid points

Pa is the “analysis-error covariance.  The Kalman filter
indicates not only the most likely state but also quantifies
the uncertainty in the analysis state.
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Kalman filter update equation:
example in 1-D
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Kalman filter problems

• Covariance propagation step very expensive

• Still need tangent linear/adjoint models for 
evolving covariances, linear error growth 
assumption still questionable.



From the Kalman filter to the 
ensemble Kalman Filter

• What if we estimate Pb from a random 
ensemble of forecasts? (Evensen, JGR
1994)

• Let’s design a procedure so if error growth 
is linear and ensemble size infinite, gives 
same result as Kalman filter.



Ensemble Kalman filter equations

( )

( )

( )

( )

, ,

b b

b

H

H H H
−

= + −

= +

=

= − −

a b b
i i i i

1T T

T

b b b b
1 n

x x K y x

K P P R

P X X

X x x x x…

H = (possibly nonlinear) 
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observation space

x = state vector 
(i for ith member  )

(1) An ensemble of parallel data assimilation cycles is conducted, 
assimilating perturbed observations .
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The ensemble Kalman filter: a schematic



How the EnKF works: 
2-D example

Start with a random sample from bimodal distribution used
in previous Bayesian data assimilation example.  Contours reflect 
the Gaussian distribution fitted to ensemble data.



Why perturb the observations?

Perturbing the observations provides an easy way to ensure that the analysis-error 
covariances  match those expected from the Kalman filter. There are other ensemble 
assimilation algorithms that get around perturbed obs (e.g., Whitaker and Hamill, 
MWR, July 2002)



How the EnKF achieves its 
improvement relative to 3D-Var:

better background-error covariances

Output from a “single-observation” experiment.  EnKF is cycled for a long time in a dry, primitive equation model.  The 
cycle is interrupted and a single observation 1K greater than first guess is assimilated. Maps of the analysis minus first 
guess are plotted. These “analysis increments” are proportional to the background-error covariances between every other 
model grid point and the observation location.



Why are the biggest increments 
not located at the observation?



Analysis increment: 
vertical cross section through front



More examples of flow-dependent 
background-error covariances



More examples 
of flow-

dependent 
background-

error 
covariances



Computational trickery in EnKF:
(1) serial processing of observations

EnKF
Background

forecasts

Observations
1 and 2

Analyses

EnKFBackground
forecasts

Observation
1

Analyses
after obs 1 EnKF

Observation
2

Analyses

Method 1

Method 2



Computational trickery in EnKF:
(2) Simplifying Kalman gain calculation
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Issues 
with 

EnKF: 
noisy 

covariances

(Analysis variable is sea-level pressure)



A solution to noisy covariances: 
“covariance localization”



Another 
localization 

example



Covariance model before / after localization

(Analysis variable is sea-level pressure)



Question: how many 
ensemble members needed?

• Depends …
– How many directions in model phase space where error 

grows?

– Covariance “localization” can ameliorate problems with 
too small an ensemble

• Generally, experiments with 25 to a few hundred 
members have shown success in a variety of 
models.



Covariance localization and size of 
the ensemble

Smaller ensembles require 
tighter localization function

From Houtekamer & Mitchell,
MWR, Jan. 2001



How does 
covariance 
localization 
make up for 

larger 
ensemble?

From Hamill et al., MWR, Nov 2001



Problem: “filter divergence”
Ensemble of solutions drifts away from true solution.  During data 
assimilation, small variance in background forecasts causes data
assimilation to ignore influence of new observations. One major 
cause: model error.



Filter divergence causes
• Too small an ensemble.  

– Insufficient variance in certain directions just due to random 
sampling.

– Not enough ensemble members.  If M members and 
G > M growing directions, no variance in some directions.

• Model error.
– Not enough resolution.  Interaction of small scales with larger 

scales impossible.
– Deterministic sub-gridscale parameterizations.
– Other model aspects unperturbed (e.g., land surface condition)
– Others

• Other errors (e.g., mis-specified observation errors)



Possible filter divergence remedies

• Parameterizing model error.
– Covariance inflation
– Integrating stochastic noise
– Adding simulated model error noise at data 

assimilation time.
– Multi-model ensembles?

• Covariance localization (discussed before)
• Better specification of  R



Remedy 1: covariance inflation

b b b b
i ir  ← − + x x x x r is inflation factor

Disadvantage: model error in different subspace?



Remedy 2:
Integrating stochastic noise
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Remedy 2:
Integrating stochastic noise

• Questions upon questions
– What is structure of S(x,t)?

– Integration methodology for noise?

– Will this produce ~ balanced covariances?

– Will noise project upon growing structures and increase 
overall variance?

• Early experiments in ECMWF ensemble to 
simulate stochastic effects of sub-gridscale in 
parameterizations (Buizza et al, QJ, 1999).



Remedy 3: adding noise 
at data assimilation time
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Idea follows Dee (Apr 1995 MWR) and Mitchell and 
Houtekamer (Feb 2000 MWR)



Remedy 3: adding noise 
at data assimilation time

Integrate deterministic model forward to next analysis
time.  Then add noise to deterministic forecasts 
consistent with Q.



Remedy 3: adding noise 
at data assimilation time (cont’d)

• Knowing statistics of Q crucial

• Mitchell and Houtekamer: estimate 
parameters of Q from data assimilation 
innovation statistics.

• DIS: only simple model of Q can be fitted.



Remedy 4: 
multi-model ensemble?

• Integrate different members with different 
models/different parameterizations.

• Initial testing shows covariances from such 
an ensemble are highly unbalanced (M. 
Buehner, RPN Canada, personal 
communication).



Applications of 
ensemble filter: 

adaptive 
observations

Can predict the expected
reduction in analysis or 
forecast error from inserting
a rawinsonde at a particular
location.

From Hamill and Snyder, 
MWR, June 2002



Applications of ensemble filter:
analysis-error covariance singular vectors

From Hamill et al., MWR, August 2003



4D-Var vs. ensemble assimilation

• Produce the same mean state IF
– Forecast model perfect

– Linear evolution of forecast perturbations

– Gaussian statistics

– 4D-Var cycles background-error covariances

– Ensemble size infinite

– H operators approximately linear



4D-Var vs. ensemble assimilation

• 4D-Var ADV:
– Established

– More efficient with 
complex H?

– Handles nonlinear H

• 4D-Var DIS:
– Adjoint / TLM coding

– Linearity assumptions

– No automatically generated 
ensemble

– Tough to treat model error

• Ensemble ADV:
– Model error treatable
– Cycles covariances
– Automatically generates 

ensemble

• Ensemble DIS:
– Expensive for complex H
– Nonlinear H problematic?
– Unproven in real NWP 

models.
– Finnecky; must get R, Q

right



Kalman filter vs. 
ensemble assimilation

• Accuracy tradeoff:  sampling errors (ensemble) 
versus falsely assuming linearity (Kalman filter).

• No adjoint / tangent linear code required for 
ensemble assimilation.

• Whichever way, both permit treatment of model 
error.



Conclusions

• Ensemble data assimilation literature growing 
rapidly because of 
– Great results in simple models

– Coding ease 

• Unites data assimilation and ensemble forecasting

• Keep an eye on the literature, or join in the 
exploration.

• www.cdc.noaa.gov/~hamill/efda_review4.pdf


